
Launching the Micro Future
Groovy, Grails and the Micro Future
— by Graeme Rocher

Agenda

— How we got here
— Microservice Challenges
— Launching the Micro Future
— Grails Roadmap

Then and Now

— Since 2008, a lot has changed
— 10 years ago Grails 1.0

was released!
— Everybody was building

Monoliths
— No Angular, No React,

No Docker, No Microservices

So We Try to Adapt

— Let's try and fit
Monolith focused framework
into Micro environment!

— Spring and Grails were
never designed for this

— ... No matter how much
marketing you hear

What to do, What to do?

Shall we:

1. Try and convince people that
something never designed for
Microservices is still ok?

2. Go back to the drawing board

© Object Computing Inc., 2018

The Goal

— Create a New Framework designed from the ground-
up for Microservices and Server-less Computing

— Blazing fast startup time
— Low Memory Footprint
— As Small As Possible JAR Sizes
— Zero Dependency
— 12 Factor - https://12factor.net

The Analysis

To meet this goal we performed
an analysis of Spring and Grails
and the challenges to using them
to develop Microservice
applications

© Object Computing Inc., 2018

What Spring (and Grails) Do

Spring is an amazing technical achievement and does so
many things, but does them at Runtime.

— Reads the byte code of every bean it finds
— Synthesizes new annotations for each annotation on

each bean method, constructor, field etc. to support
Annotation metadata

— Builds Reflective Metadata for each bean for every
method, constructor, field etc.

https://github.com/spring-projects/spring-framework/tree/master/spring-core/src/main/java/org/springframework/core/type/classreading
https://github.com/spring-projects/spring-framework/blob/master/spring-core/src/main/java/org/springframework/core/annotation/AnnotationUtils.java#L1428
https://github.com/spring-projects/spring-framework/blob/master/spring-beans/src/main/java/org/springframework/beans/CachedIntrospectionResults.java

So What's the Problem?

So What's the Problem?

The Micro Reality

— With Spring (and Grails) anything
beyond "Hello World" becomes
fat quickly

— But we love the programming
model and productivity so
we live with it

— There must be a better way...

Introducing Micronaut

— Designed from the ground up
with Microservices in mind

— Ultra-light weight and
Reactive - Based on Netty

— Integrated AOP and
Compile-Time DI

— HTTP Client & Server

DEMO
— Hello Micronaut

Hello Micronaut

@Controller

class HelloController {

 @Get("/hello/{name}")

 String hello(String name) { "Hello $name!" }

}

@Client("/") // Client Generated at Compile Time

interface HelloClient {

 @Get("/hello/{name}")

 String hello(String name)

}

How Small?

— Smallest Micronaut Hello World JAR is 8MB when
written Java or 12MB in Groovy

— Can be run with as little as 10mb Max Heap (24mb for
Groovy)

— Startup time is sub-second for Java, around a second
for Groovy

— All Dependency Injection, AOP and Proxy generation
happens at compile time

But... How?

— Compile Time Dependency Injection & AOP for Groovy,
Java and Kotlin (!)

— AST Transforms for Groovy. Annotation processors for
Java/Kotlin

— Annotation metadata produced at Compile Time
— Reflection Free and No Reflection Data Caching

Not Another HTTP Server!?

— If all we had achieved was
another HTTP server
Micronaut wouldn't be very
interesting

— So what else does it do?

Natively Cloud Native

— Service Discovery - Consul and Eureka Supported;
Route 53 Planned

— Configuration Sharing - Consul Supported; Amazon &
GCP Planned

— Client Side Load Balancing - Integrated or Netflix
Ribbon Supported

— Support for Serverless Computing via AWS Lambda

DEMO
— Micronaut Pet Store

The HTTP Server

— Fully Reactive and non-blocking - Reactor and RxJava
2.x support

— Auto configuration for common databases

@Get('/pets')
Single<List<Pet>> pets() {
 petClient.list()
 .onErrorReturnItem(Collections.emptyList())
}

The HTTP Client

— Client Implementations Produced at Compile Time
— Service Discovery by Service ID
— Automatic Client Side Load Balancing & Fallback

@Client(id = "pets", path = "/v1")
interface PetClient {
 @Get('/pets')
 Single<List<Pet>> list()
}

Serverless Computing

— Write Functions and Run them locally or as regular
server applications

— Deploy Functions to AWS Lambda - after warm-up
functions execute in milliseconds

@Field @Inject Twitter twitter

@CompileStatic
URL updateStatus(Message status) {
 Status s = twitter.updateStatus(status.text)
 String url = "https://twitter.com/$s.user.screenName/status/${s.id}"
 return new URL(url)
}

Micronaut Roadmap

— First Milestones in Q2
— GA by the end of the year. Still todo:
— AWS Route 53,

Google Metadata Server Support
— Metrics & Distributed Tracing
— JWT Token Auth

Micronaut - Find Out More

— We have launched a Micronaut
website at: http://micronaut.io

— Register at the bottom
to get notifications

— Speak to us (OCi) if you wish to
use Micronaut in beta form

— Check out Alvaro's talk about
Micronaut on Saturday at 9:30am

What About Grails?

— Grails is awesome, mature and robust
... for Creating Monoliths

— Not every Application needs
Microservices

— You will want parts of Micronaut
in your Grails apps:
HTTP Client, Discovery Client etc.

Grails Status Update

— Grails 3.3.3 just released
— Users seeing measured improvement in

Memory consumption in production
— More 3.3.x releases planned

Grails 4.0 (Q4 2018)

— Java 8 minimum, Java 9 support, Groovy 2.5
— Spring Boot 2 and Spring 5
— GORM 7.0 (Hibernate 5.2 minimum)
— Micronaut Integration

Summary

— Micronaut aims to provide the same wow factor for
Microservices that Grails did for Monoliths

— Built by the people that made Grails, leveraging over
10 years experience in framework development

— Coming soon in 2018

Q & A

