
objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved. No part of these notes may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechani cal, photocopying, recording, or otherwise, without the prior, wr itten
permission of Object Computing, Inc. (OCI)

GORM + GraphQL !

James Kleeh

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved. 2

1. GraphQL
1. Features / Benefits

2. Challenges

3. Limitations

2. GORM GraphQL

1. Features / Benefits

2. Customizations

AGENDA

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved. 3

REST is too rigid !

The same data types and format is returned for every execution. Some

use cases of the API may only need a fraction of the properties. The

extra data that is sent is wasting time and resources both on the server

and on the network.

The Problem

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved. 4

GraphQL

An API middleware specification that allows clients to control

the response of the server for each individual request. Has no

dependencies on any communication or persistence layer.

The Solution

© 2018, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 5

It has nothing to do with a
graphing database!

¥Specification

¥Schema Definition

¥Introspective

¥Application Layer Middleware

¥Strongly Typed

What is GraphQL?

© 2018, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 6

Efficiency, Efficiency, Efficiency

¥ Multiple operations simultaneously
¥ Only the data requested is returned
¥ Self documenting
¥ Client features to control response
based on variables and data types

¥ One ÒendpointÓ can support many
use cases

Key Advantages

© 2018, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 7

Key Disadvantages

¥ Truly Dynamic Data Not Easy
¥ Recursive Data Structures
¥ Security Not As Expressive
¥ Time Intensive To Setup
¥ Another Point Of Failure
¥ Not As Simple For The Client

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved. 8

GitHub API v4 is implemented with GraphQL!

https://developer.github.com/v4/

DEMO

© 2018, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 9

¥Generating a schema for all
persistent entities that should
be exposed

¥Parsing the requested
properties to execute the most
efficient queries

¥Implement communication with
the API over HTTP

The Challenge

Creating A Schema

Due to the nature of GraphQL schemas, it is often required to cre ate multiple ÒtypesÓ

that represent the same underlying resource.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Creating A Schema (CREATE)

In order to create Book

objects, we need to define an

argument type for users to

pass in the data required to

successfully persist the Book.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Creating A Schema (UPDATE)

In order to update a Book object,

we need to define an argument type

for users to pass in the data

required to successfully update the

Book.

The version property was added to

support optimistic locking. The title

field is no longer null to allow users

to send partial data.

Null Allowed

New Field

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Implementing HTTP Communication

http://graphql.org/learn/serving-over-http/

While there is nothing in the official specification that determin es how to

communicate with a GraphQL server over HTTP, the website has gu idelines

on:

¥ Content Types

¥ Request Methods

¥ Parameter Names

¥ Endpoint URI

¥ Response Format

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

http://graphql.org/learn/serving-over-http/

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved. 14

GORM-GraphQL is a library that integrates the GraphQL technology

with GORM to automatically create a schema and operations for

persistent entities (domain classes). A Grails plugin also exists to

implement the HTTP communication as well as several other featu res

that are specific to Grails. https://github.com/grails/gorm-graphql

GORM + GraphQL Has You Covered

https://github.com/grails/gorm-graphql

© 2018, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 15

¥ Schema Generation

¥ Efficient Query Building

¥ Grails Plugin

¥ HTTP Communication

¥ GraphiQL Browser

¥ Spring Beans

¥ Data Binding

¥ Testing Support

Main Features

Getting Started

To expose a domain class as a set of
GraphQL operations, simply add a static
property.

By default, six operations will be created
for each domain class that has been
designated for GraphQL processing.

Create, Update, Delete, List, Show, Count

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved. 17

Example Application

https://github.com/grails-samples/graphql-demo

DEMO

Customizations

The default operations are great, butÉ

How do I customize the existing operations?

How do I add my own operations?

How do I add custom properties?

How do I deprecate properties?

How do I add a description for my properties?

How do I supply my own queries?

How do I change how validation errors are returned?

How do I change the response for a delete?

How do I É

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Definitions

Data Fetcher : The glue between the persistence layer and the GraphQL server.
Responsible for retrieving all data.

Interceptor : Intercepts data fetchers for custom and provided operations and
provides the ability to cancel (return null). Schema interceptors can also be created
to manipulate the GraphQL schema manually.

Data Binders : Responsible for using the GraphQL arguments and applying the data
to a persistent entity instance. If the plugin is being used, the defau lt Grails data
binding is configured for all domains.

Scalars : Handles type conversion in GraphQL. Converts properties of standar d or
custom Java types to a simple format (Number, Float, String, etc)

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations

There are several areas where customizations can occur.

Persistent Entity Mapping

¥ Define Metadata (Description, etc)

¥ Add New Properties

¥ Create New Operations

¥ Override Data Fetchers For Properties

¥ Exclude Properties

Bean Post Processor (Plugin Only)

¥ Add Custom Scalar Types

¥ Register Data Fetchers For Domains

¥ Register Data Binders For Domains

¥ Register Interceptors

Bean Overrides (Plugin Only)

¥ Delete Response Handler

¥ Validation Errors Response Handler

¥ Many OthersÉ

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations - Getting Started

Replace:

With:

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations - Return Types

When declaring a custom property, operation, argument, or field, the ÒtypeÓ can be
declared in 3 different ways:

¥ Class (Author): When the return type is a single instance

¥ List<Class> ([Author]): When the return type is a collection of instances

¥ PaginatedType: When the return type is a collection, but the resul t should be a
paginated result (defined by the GraphQLPaginationResponseHandler)

¥ String (ÒCustomTypeÓ): When the return type is custom and will be de fined

add(name, type) {} // Adding a custom property

query(name, type) {} // Defining a new query operation

mutation(name, type) {} // Defining a new mutation operatio n

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations - Custom Types

Custom types are a collection of
fields.

Custom types require a data fetcher
to be provided in order to return the
desired data to GraphQL.

The defined fields follow the same
rules for return types and can be a
custom type themselves.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations - Metadata

Metadata including a description and deprecation information can be pro vided for
persistent entities and properties, custom properties, arguments, fields, etc.

The metadata can be supplied in one of two ways; The mapping DSL and the
@GraphQL annotation. In some cases, it is only possible to use the a nnotation
because the given class is not a persistent entity. Examples include em bedded
POGOs and enums.

Examples

Adding a description to a property (Mapping DSL):

And with the annotation:

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations - Custom Operations

Custom operations allow you to provide ÒendpointsÓ for users of the API. They fall
into one of two categories, query and mutation. It is necessary to supply a data
fetcher for the new operation.

This example could be part of the typical User -> UserRole <- R ole domain
relationship. A new query operation ÒusersByRoleÓ is being create d that returns a list
of User instances. It has one argument, ÒroleÓ, which is a Long. The data fetcher is
responsible for retrieving the list of users.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations - Custom Operations (contd.)

Type being queried

Join Properties

Provided By Library

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Data Fetchers - Context

Data Fetchers will typically not participate in the application contex t and therefore will not
be able to inject any dependent beans. In addition, data fetchers are not aware of the
current HTTP request since GraphQL is not specific to HTTP. To be abl e to pass necessary
information to your data fetchers, you can manipulate the Òcontex tÓ.

The context is available in the data fetching environment and can be any type
(DataFetchingEnvironment#getContext()). The plugin exposes a bean that is used to
populate the context. To customize it, override the bean with your own.

By default the context is a Map that contains a key ÒlocaleÓ that store s the locale of the
current request.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Data Fetchers - Context (contd.)

It is not necessary to extend from the default class, however the o bject returned should
either be a map with a ÒlocaleÓ key, or the returned object shoul d implement
LocaleAwareContext in order to function correctly with the default data fetchers.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations - Interceptors

Since all requests go to a single endpoint (typically /graphql), secur ity can not be defined at
the URL level. In GraphQL, the current best practice is to simply r eturn null for data that a
user doesnÕt have access to.

There are two flavors of interceptors that can be registered with go rm-graphql. The first is
an interceptor that gets executed before the data fetcher that will retu rn the appropriate
data. The other is designed to allow users to hook into the schema creation process at the
lowest level, the graphql-java API.

For provided operations, the interceptor has access to the data fetching e nvironment and
the data fetcher type. For custom operations, the interceptor has access to the data
fetching environment and the name of the operation.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations - Interceptors (contd.)

The above example verifies that the author being updated is owned by the current user. The
author is retrieved based on the ÒidÓ argument and compared with the cu rrent user found
through the SpringSecurityService that was added to the context in a previous slide.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Then register the class as a bean in resources.groovy.

Customizations - Interceptors (contd.)

To register the interceptor with GraphQL in a Grails application, define a bean post
processor and access the interceptor manager.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Customizations - Data Binding

Providing your own data binding implementation for one or all entities is simple. Create a
class that extends GraphQLDataBinder and register it with the data binder manager.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Then register the class as a bean in resources.groovy.

Customizations - Data Binding (contd.)

To register the data binder with GraphQL in a Grails application, define a bean post
processor and access the data binder manager.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

© 2018, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 34

The plugin provides a functional
testing trait

Easy to create a unit test for your
schema that is specific to your
datastore

Testing

Functional Testing

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Schema Testing

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

objectcomputing.com© 2018, Object Computing, Inc. (OCI). All rights reserved.

Q&A

