
objectcomputing.com

WEBINAR

© 2019, Object Computing, Inc. (OCI). All rights reserved. No part of these notes may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior, written permission of Object Computing, Inc. (OCI)

Easy State Management 
in React
Mark Volkmann, Partner and Principal Software Engineer
mark@objectcomputing.com

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 2

1. Store state in one place, outside any component

2. Allow components to access any state

3. Re-render components if any state they depend on changes

4. Make it easy for components to modify any state

5. Do not require new code to support new state

GOALS

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 3

There are many popular approaches  
to managing state in React applications

Reviewed on following slides

EXISTING STATE MANAGEMENT APPROACHES

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 4

Hold application state in the topmost component 
and pass it down to descendant components using props

Downside: 
Many components will accept and pass props they do not actually use

When component tree becomes deep, this does not scale well

PROP DRILLING

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 5

Uses a single “store” that can be thought of as a client-side database

Components

obtain state data through functions like mapStateToProps

request state changes using functions like mapStateToDispatch

create action objects and dispatch them

Reducer functions

are given current state and an action

responsible for returning new state without mutating current state

REDUX ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 6

There are many sub-approaches to using Redux

Involve concepts like “thunks” and “sagas”

Introduce unnecessary complexity

... REDUX

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 7

Built into React

An application can create any number of Context objects 
by calling React.createContext

A Context can include both data and methods to update the data

Each Context has a Provider and a Consumer

CONTEXT API ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 8

Provider elements are often rendered 
at the top of the component tree to  
make the context available to the entire application

Consumer elements wrap around  
the rendered JSX of components that 
need to access and update context data

... CONTEXT API

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 9

Both have a learning curve

Both require new code to support new state data
in Redux this involves modifying a reducer function

in the Context API this involves adding methods to the Context

ISSUES WITH REDUX AND CONTEXT API

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 10

Redux always uses a single store,  
but parts of the store can be managed by different reducer functions 
that are combined into a single reducer function

Context API supports creating multiple Context instances  
that each manage subsets of the application data

Benefit of segregating application state is that  
it’s possible to know that only a subset of components 
use and have the ability to modify a particular piece of state data

SEGREGATION OF APP STATE ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 11

Segregating application state becomes messy 
if some components need data from multiple subsets

Another way to think about this segregation  
is to consider REST service implementation

often operate on relational database tables

not typical to restrict a REST service to a subset of database tables

Attempts to segregate application state data 
make code more complex for little benefit

... SEGREGATION OF APP STATE

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 12

How can we achieve the goals described earlier in the simplest possible way?

context-easy is an open source library in npm

Builds on Context API

Implements a Provider that can manage all state for a React application

Highly generic, making it suitable for any application

context-easy

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 13

Easiest way for components to use context-easy Provider  
is through useContext hook

If not yet familiar with React hooks,  
check out my video at https://bit.ly/2Tez5V1

HOOKS

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 14

Done in topmost component, often src/App.js

Three steps are required

1. Import Easy Provider

CONFIGURING USE ...

import {EasyProvider} from 'context-easy';

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 15

2. Define initial state

... CONFIGURING USE ...

const initialState = {
 count: 0,
 person: {
 name: 'Mark',
 occupation: 'software developer'
 },
 size: 'medium'
};

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 16

3. Wrap top-most component in EasyProvider

... CONFIGURING USE

export default function App() {
 return (
 <EasyProvider initialState={initialState} log validate>
 {/* top-most components go here */}
 </EasyProvider>
);
}

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 17

In function components that access/modify state

1. Import useContext hook and EasyContext

2. Get context object inside function component

USING IN COMPONENTS ...

import React, {useContext} from 'react';
import {EasyContext} from 'context-easy';

const context = useContext(EasyContext);

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 18

3. Access state from context object

4. Update state properties at specific paths by calling methods on context

... USING IN COMPONENTS

const {name} = context.person;

context.set('person.name', 'Mark');

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 19

The context object implements ten methods

Most take a path argument that is a string  
representing a dot-separated path into state

Let’s review these in alphabetical order

CONTEXT METHODS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 20

context.decrement(path)

decrements number at given path

optional second argument specifies amount 
by which to decrement and defaults to one

context.delete(path)

deletes property at given path

... CONTEXT METHODS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 21

context.filter(path, fn)

replaces array at given path with new array 
that is the result of filtering current elements

function provided as second argument is called on each array element

should return true for elements to be retained 
and false for elements to be filtered out

... CONTEXT METHODS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 22

context.increment(path)

increments number at given path

optional second argument specifies amount  
by which to increment and defaults to one

... CONTEXT METHODS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 23

context.log(label)

writes current state to devtools console

outputs context-easy:, followed by an optional label (defaults to ''),
state =, and the state object

object starts in collapsed view; click disclosure triangles to expand

... CONTEXT METHODS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 24

context.map(path, fn)

replaces array at given path with new array

function provided as second argument  
is passed each array element one at a time

new array will contain return values of these calls

... CONTEXT METHODS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 25

context.push(path, newValue1, newValue2, ...)

replaces array at given path with new array

new array starts with all existing elements  
and ends with all specified new values

context.set(path, value)

sets value at given path to given value

... CONTEXT METHODS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 26

context.toggle(path)

toggles boolean value at given path

context.transform(path, fn)

sets value at given path to 
value returned by passing current value  
to function provided as second argument

... CONTEXT METHODS

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 27

useContext hook subscribes components that call it  
to context state updates

Means components will be re-rendered on every context state change

To only re-render when specific context state properties are changed,  
wrap component JSX in call to useCallback

COMPONENT RE-RENDERING ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 28

Example: Suppose a component only depends on  
state properties count and person.name

... COMPONENT RE-RENDERING

import React, {useCallback, useContext} from 'react';

export default SomeComponent() {
 const context = useContext(EasyContext);
 const {count, person} = context;
 const {name} = person;
 return useCallback(
 <div>
 ...component JSX goes here...
 </div>,
 [count, name] // key part!
);
}

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 29

It is common to have input, select, and textarea elements  
with onChange handlers that get their value from event.target.value  
and update a specific state path

Alternative is to use provided components 
Input, Select, TextArea, RadioButtons, and Checkboxes

All these take a path prop which is used to 
get the current value for the component  
and update the value at that path

FORM ELEMENTS

Two-way
data binding!

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 30

HTML input elements can be replaced by Input component

type property defaults to 'text',  
but can be set to any valid value including 'checkbox'

Value used by Input is state value at specified path

When user changes value, this component updates value at path

To perform additional processing of changes such as validation, 
supply an onChange prop whose value is a function

 INPUT COMPONENT

<Input path="user.firstName" />

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 31

HTML textarea elements can be replaced by TextArea component

TEXTAREA COMPONENT

<TextArea path="feedback.comment" />

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 32

HTML select elements can be replaced by Select component

If option elements have value attribute,  
that value will be used instead of text inside option

SELECT COMPONENT

<Select path="favorite.color">
 <option>red</option>
 <option>green</option>
 <option>blue</option>
</Select>

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 33

For set of radio buttons, use RadioButtons component

When a radio button is clicked, state property flavor  
will be set to the value of that radio button

RADIOBUTTONS COMPONENT

<RadioButtons
 className="flavor"
 list={radioButtonList}
 path="favorite.flavor"
/>

const radioButtonList = [
 {text: 'Chocolate', value: 'choc'},
 {text: 'Strawberry', value: 'straw'},
 {text: 'Vanilla', value: 'van'}
];

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 34

For set of checkboxes, use Checkboxes components

When a checkbox is clicked, boolean value at corresponding path  
will be toggled between false and true

CHECKBOXES COMPONENT

<Checkboxes className="colors" list={checkboxList} />

const checkboxList = [
 {text: 'Red', path: 'color.red'},
 {text: 'Green', path: 'color.green'},
 {text: 'Blue', path: 'color.blue'}
];

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 35

Demonstrates using context-easy  
in an app with multiple views

DEMO

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 36

Open terminal window

Enter create-react-app demo

Enter cd demo

Enter npm run start

Verify that initial app is running in default browser

DEMO SETUP ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 37

Open new terminal window

Enter npm install context-easy

... DEMO SETUP

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 38

Create src/Form.js
use an Input component  
for path user.name

DEMO - FORM COMPONENT

import React from 'react';
import {Input} from 'context-easy';

export default function Form() {
 return (
 <form>
 <label>User Name</label>
 <Input path="user.name" />
 </form>
);
}

Two-way
data binding!

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 39

Create src/Report.js
render context.user.name

DEMO - REPORT COMPONENT

import React, {useContext} from 'react';
import {EasyContext} from 'context-easy';

export default function Report() {
 const context = useContext(EasyContext);
 return <div>The user name is {context.user.name}.</div>;
}

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 40

Create src/Top.js
use value of context.route to decide whether a 
Form or Report component should be rendered

provides very simple routing for apps where the URL  
does not need to change when the view changes

see code on next slide

DEMO - TOP COMPONENT

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 41

DEMO - TOP COMPONENT

import React, {useContext} from 'react';
import {EasyContext} from 'context-easy';
import Form from './Form';
import Report from './Report';

export default function Top() {
 const context = useContext(EasyContext);
 const page = context.route === 'report' ? <Report /> : <Form />;
 return (
 <div>
 <header>
 <button onClick={() => context.set('route', 'form')}>Form</button>
 <button onClick={() => context.set('route', 'report')}>Report</button>
 </header>
 {page}
 </div>
);
}

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 42

Modify src/App.js
render Top component 
inside an EasyProvider

DEMO - APP COMPONENT

import React from 'react';
import {EasyProvider} from 'context-easy';
import Top from './Top';
import './App.css';

const initialState = {
 route: '',
 user: {name: ''}
};

export default function App() {
 return (
 <EasyProvider
 initialState={initialState}
 log validate>
 <Top />
 </EasyProvider>
);
}

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 43

Modify src/App.css
remove unused rules

add rules for body  
and input elements

DEMO - CSS

body {
 padding: 20px;
}

input {
 border: solid gray 1px;
 border-radius: 4px;
 margin-left: 10px;
 padding: 4px;
}

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 44

Return to default web browser

Enter a user name

Click “Report” button

Verify that user name is displayed

Click “Form” button

Change name

Verify that report is updated

DEMO OPERATION

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 45

Open browser devtools console

Note messages that are output when context is modified 
and how entire state can be viewed

Select React tab to view the react-devtools (assumes it is installed)

Select EasyProvider element inside the App element

Note how all context state can be viewed here also

DEMO DEBUGGING

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 46

Implement same app using Redux  
or using Context API without context-easy

The code will be much longer!

DEMO EXTRA CREDIT

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 47

EasyProvider component accepts props that specify options

To log all state changes in devtools console, include log prop with no value

To validate all method calls made on context object 
and throw an error when they are called incorrectly,  
include validate prop with no value

Useful in development, but typically should not be used in production

If NODE_ENV environment variable is set to 'production',  
log and validate options are ignored

OPTIONS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 48

Other options are specified in options prop  
whose value is an object that specifies their values

persist option is described on “SessionStorage” slide later

version option is described on “Versions” slide later

replacerFn and reviverFn options 
are described on “Sensitive Data” slide later

... OPTIONS

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 49

When layout of state changes, 
it is necessary to change state paths throughout code

For apps that use a small number of state paths  
this is likely not a concern

For apps that use a large number of state paths,  
consider creating a source file that exports 
constants for state paths, perhaps named path-constants.js,  
and use those when calling context methods that requires a path

PATH CONCERNS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com

// In the source file for a component ...
import {GAME_HIGH_SCORE, USER_CITY} from './path-constants';
...
context.set(USER_CITY, 'St. Louis');
context.transform(GAME_HIGH_SCORE, score => score + 1);

 50

Example:

With this approach, if layout of state changes  
it is only necessary to update these constants

... PATH CONCERNS

// In path-constants.js ...
const GAME_HIGH_SCORE = 'game.statistics.highScore';
const USER_CITY = 'user.address.city';

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 51

Typically React state is lost when users refresh the browser

To avoid this, sessionStorage is used to 
save context state on every state change

Throttled to not updated more than once per second

sessionStorage state is automatically reloaded 
into context state when browser is refreshed

SESSIONSTORAGE ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 52

To opt out of this behavior ...

... SESSIONSTORAGE

const options = {persist: false}; // defaults to true
...
return (
 <EasyProvider initialState={initialState} options={options}>
 ...
 </EasyProvider>
);

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 53

During development, when the shape of the initial state changes  
it is desirable to replace what is in sessionStorage with new initial state

One way is to close browser tab and open new one

Otherwise the application may not work properly because it  
will expect different data than what is in sessionStorage

VERSIONS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 54

To force new initial state to be used,  
supply a version property in 
options object passed to EasyProvider

When a new version is seen, 
data in sessionStorage replaced with 
initialState value passed to EasyProvider

... VERSIONS

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 55

Can prevent sensitive data such as passwords and credit card numbers 
from being written to sessionStorage

Add replacerFn and reviverFn functions to options object passed to EasyProvider
similar to optional replacer and reviver parameters used by JSON.stringify and JSON.parse

both are passed a state object

To change data in any way, including deleting, modifying, and adding properties,  
make a copy of state object, modify the copy, and return it

SENSITIVE DATA

Consider using the lodash function
deepClone to create the copy.

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 56

A larger example application that uses context-easy  
can be found in the GitHub repository at  
https://github.com/mvolkmann/context-easy-demo

EXAMPLE APP

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 57

Nice feature of Redux is ability to use redux-devtools

Supports viewing all actions that have been dispatched  
and state after each action has been processed

Also supports “time travel debugging”  
which shows state of UI after a selected action

BROWSER DEVTOOLS ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 58

log feature of context-easy outputs a description of each context method call
and the state after the call

Somewhat of a replacement for what redux-devtools provides

react-devtools displays data in a context when its Provider element is selected

Updated dynamically when context data changes

... BROWSER DEVTOOLS

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 59

1. Store state in one place, outside any component
context-easy uses a single Context

2. Allow components to access any state
context object holds all application state 
and is directly accessible in components  
using references like context.user.address.city

GOAL ASSESSMENT ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 60

3. Re-render components if any state they depend on changes
components that call useContext(EasyContext)  
are subscribed to changes in the context  
and re-render when the context state changes

to make this more efficient, add use of useCallback hook  
so components only re-render when there are changes they care about

... GOAL ASSESSMENT ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 61

4. Make it easy for components to modify any state
context object has methods that support this 
such as context.set(path, value)

... GOAL ASSESSMENT ...

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 62

5. Do not require new code to support new state
when new application state data is needed, only change  
is to add initial value where initial state is defined

when acceptable to begin with undefined value, 
no changes are needed

... GOAL ASSESSMENT

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 63

I believe context-easy provides the easiest way  
to manage state in a React application

Much easier than using Redux or  
using the Context API directly

Wrap Up

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 64

If you would rather continue using Redux, see redux-easy in npm
supports mostly same API

To use this approach in a Vue application, see vuex-easy in npm
also supports mostly same API

Other Options

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 65

Events:
● objectcomputing.com/events

Training:
● objectcomputing.com/training
● grailstraining.com
● micronauttraining.com

Or email info@ocitraining.com to schedule a custom training program for your team online,
on site, or in our state-of-the-art, Midwest training lab.

LEARN MORE ABOUT OCI EVENTS AND TRAINING

CONNECT WITH US

1+ (314) 579-0066

@objectcomputing

objectcomputing.com

© 2019, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com 66

