
Ant1

Ant

Ant2

What Is Ant?

• A build tool like make

• Open source
– from the Apache Jakarta project

– http://jakarta.apache.org/ant

• Implemented in Java

• Used to build many open source products
– such as Tomcat and JDOM

Ant3

Why Use Ant Instead of make?

• Ant is more portable
– Ant only requires a Java VM (1.1 or higher)

– make relies on OS specific commands to carry out it’s tasks

– make can be used under Windows using Cygwin (a UNIX emulator)
but that’s a big install! … ~37 meg.

• Ant targets are described in XML
– make has a cryptic syntax

– make relies proper use of tabs that is easy to get wrong
• you can’t see them

• Ant is better for Java-specific tasks
– faster than make since all tasks are run from a single VM

– easier than make for some Java-specific tasks
• such as generating javadoc, building JAR/WAR files and working with EJBs

Ant4

How Does Ant Work?

• Ant commands (or tasks) are implemented by Java classes
– many are built-in

– others come in optional JAR files

– custom commands can be created

• Each project using Ant will have a build file
– typically called build.xml since Ant looks for this by default

• Each build file is composed of targets
– these correspond to common activities like compiling and running code

• Each target is composed of tasks
– executed in sequence when the target is executed

– like make, Ant targets can have dependencies
• for example, modified source files must be compiled

before the application can be run

Ant5

How Does Ant Work? (Cont’d)

• Targets to be executed
– can be specified on the command line when invoking Ant

– if none are specified then the default target is executed

– execution stops if an error is encountered
so all requested targets may not be executed

• Each target is only executed once
– regardless of the number of other targets that depend on it

– for example
• the “test” and “deploy” targets both depend on “compile”

• the “all” target depends on “test” and “deploy”
but “compile” is only executed once when “all” is executed

• Some tasks are only executed when they need to be
– for example, files that have not changed since the

last time they were compiled are not recompiled

not necessarily a good thing

Ant6

Sample Build File
(contains common targets used for servlet projects)

<?xml version="1.0" encoding="UTF-8"?>

<project name="Web App." default="deploy" basedir=".">

 <!-- Define global properties. -->

 <property name="appName" value="shopping"/>

 <property name="buildDir" value="classes"/>

 <property name="docDir" value="doc"/>

 <property name="docRoot" value="docroot"/>

 <property name="junit" value="/Java/JUnit/junit.jar"/>

 <property name="srcDir" value="src"/>

 <property name="tomcatHome" value="/Tomcat"/>

 <property name="servlet" value="${tomcatHome}/lib/servlet.jar"/>

 <property name="warFile" value="${appName}.war"/>

 <property name="xalan" value="/XML/Xalan/xalan.jar"/>

 <property name="xerces" value="/XML/Xalan/xerces.jar"/>

Some of these are used to
set “classpath” on the next page.
Others are used in task parameters.

target that is run when none are specified

relative directory references
are relative to this

Where possible, use UNIX-style
paths even under Windows.
This is not possible when
Windows directories on drives
other than C must be specified.

Ant7

Sample Build File (Cont’d)

 <path id="classpath">

 <pathelement path="${buildDir}"/>

 <pathelement path="${xerces}"/>

 <pathelement path="${xalan}"/>

 <pathelement path="${servlet}"/>

 <pathelement path="${junit}"/>

 </path>

 <target name="all" depends="test,javadoc,deploy"

 description="runs test, javadoc and deploy"/>

used in the compile,
javadoc and test targets

means that the test, javadoc and deploy
targets must be executed before this target

doesn’t have any tasks of its own;
just executes other targets

Ant8

Sample Build File (Cont’d)

 <target name="clean" description="deletes all generated files">

 <delete dir="${buildDir}"/> <!-- generated by the prepare target -->

 <delete dir="${docDir}/api"/> <!-- generated by the javadoc target -->

 <delete>

 <fileset dir=".">

 <include name="${warFile}"/> <!-- generated by the war target -->

 <include name="TEST-*.txt"/> <!-- generated by the test target -->

 </fileset>

 </delete>

 </target>

 <target name="compile" depends="prepare"

 description="compiles source files">

 <javac srcdir="${srcDir}" destdir="${buildDir}" classpathref="classpath"/>

 </target>

 <target name="deploy" depends="war,undeploy"

 description="deploys the war file to Tomcat">

 <copy file="${warFile}" tofile="${tomcatHome}/webapps/${warFile}"/>

 </target>

compiles all files in or below srcDir that have no .class file or
have been modified since their .class file was created;
don’t have to list specific file names as is common with make

makes the servlet available through Tomcat;
Tomcat won’t expand the new war file unless the
corresponding webapp subdirectory is missing

means that the prepare target must
be executed before this target

classpath is defined on page 7

Ant9

Sample Build File (Cont’d)

 <target name="dtd" description="generates a DTD for Ant build files">

 <antstructure output="build.dtd"/>

 </target>

 <target name="javadoc" depends="compile"

 description="generates javadoc from all .java files">

 <delete dir="${docDir}/api"/>

 <mkdir dir="${docDir}/api"/>

 <javadoc sourcepath="${srcDir}" destdir="${docDir}/api"

 packagenames="com.ociweb.*" classpathref="classpath"/>

 </target>

 <target name="prepare" description="creates output directories">

 <mkdir dir="${buildDir}"/>

 <mkdir dir="${docDir}"/>

 </target>

creates directories needed by other targets
if they don’t already exist

generates a DTD that is useful for learning
the valid tasks and their parameters

generates javadoc for all
.java files in or below srcDir.

can’t just use a single * here and can’t use multiple *’s

classpath is defined on page 7

Ant10

Sample Build File (Cont’d)

 <target name="test" depends="compile" description="runs all JUnit tests">

 <!-- Delete previous test logs. -->

 <delete>

 <fileset dir=".">

 <include name="TEST-*.txt"/> <!-- generated by the test target -->

 </fileset>

 </delete>

 <taskdef name="junit"

 classname="org.apache.tools.ant.taskdefs.optional.junit.JUnitTask"/>

 <junit printsummary="yes">

 <classpath refid="classpath"/>

 <batchtest>

 <fileset dir="${srcDir}"><include name="**/*Test.java"/></fileset>

 <formatter type="plain"/>

 </batchtest>

 </junit>

 </target>

junit.jar must be in the CLASSPATH environment variable for this to work.
It’s not enough to add it to <path id="classpath"> in this file.

runs all JUnit tests in or below srcDir

** specifies to look in any
subdirectory at any depth

classpath is defined on page 7

Ant11

Sample Build File (Cont’d)

 <target name="undeploy" description="undeploys the web app. from Tomcat">

 <delete dir="${tomcatHome}/webapps/${appName}"/>

 <delete file="${tomcatHome}/webapps/${warFile}"/>

 </target>

 <target name="war" depends="compile" description="builds the war file">

 <war warfile="${warFile}" webxml="web.xml">

 <classes dir="${buildDir}"/>

 <fileset dir="${docRoot}"/>

 </war>

 </target>

</project>

makes the servlet unavailable to Tomcat

creates a web application archive (WAR)
that can be deployed to a servlet engine
like Tomcat

contains HTML, JavaScript, CSS and XSLT files

Ant12

Ant Setup Under Windows

• Download
– download jakarta-ant-bin.zip and optional.jar from

http://jakarta.apache.org/ant/release/v1.2/bin/
• obviously future versions will be at a different URL

• Unzip
– unzip jakarta-ant-bin.zip into C:\Java\Ant

• additional task documentation not included with this download can be
obtained from http://jakarta.apache.org/cvsweb/index.cgi/jakarta-ant/docs/

– move optional.jar to C:\Java\Ant\lib
• only necessary to use optional Ant tasks such as FTP, JUnit and EJB tasks

• all JAR files in %ANT_HOME%\lib are automatically added to CLASSPATH
by ant.bat which is run when ant is invoked

Ant13

Ant Setup Under Windows (Cont’d)

• Set environment variables
– define ANT_HOME to be the location where Ant was unzipped

• for example, C:\Java\Ant

– define JAVA_HOME to be the location where the JDK is installed
• for example, C:\jdk1.3

– add to CLASSPATH
• a JAXP-compliant XML parser such as Xerces

– download zip file marked “latest binaries” from http://xml.apache.org/dist/xerces-j

– unzip it and add xerces.jar to CLASSPATH

– add to PATH
• %ANT_HOME%\bin

Ant14

Using Ant

• ant -projecthelp
– lists targets in build.xml of the current directory

– example output
Searching for build.xml ...

Buildfile: C:\XMLProgLabs\Framework\build.xml

Main targets:

 clean deletes all generated files

 compile compiles source files

 deploy deploys the war file to Tomcat

 dtd generates a DTD for Ant build files

 javadoc generates javadoc from all .java files

 prepare create output directories

 test runs all JUnit tests

 undeploy undeploys the war file from Tomcat

 war builds the war file

Targets with no description attribute are listed as “Subtargets” after the main targets.
These are typically only invoked by other targets via dependencies
or using the Ant and AntCall built-in tasks discussed later.

Ant15

Using Ant (Cont’d)

• ant [options] [target-names]
– runs targets with specified names,

preceded by targets on which they depend

– can specify multiple target-names separated by spaces

– omit target-name to run the default target

– -D option specifies a property that can be used by targets and tasks
-Dproperty-name=property-value

• can specify more than one of these

• ant -help
– lists other command-line options

Ant16

Ant Output

• Indicates the tasks that were executed
– for example
Searching for build.xml ...

Buildfile: C:\XMLProgLabs\Framework\build.xml

prepare:

 [mkdir] Created dir: C:\XMLProgLabs\Framework\classes

compile:

 [javac] Compiling 26 source files to C:\XMLProgLabs\Framework\classes

war:

 [war] Building war: C:\XMLProgLabs\Framework\shopping.war

undeploy:

 [delete] Deleting directory C:\Tomcat\webapps\shopping

 [delete] Deleting: C:\Tomcat\webapps\shopping.war

deploy:

 [copy] Copying 1 files to C:\Tomcat\webapps

BUILD SUCCESSFUL

Total time: 5 seconds

blank lines were removed
so this would fit on the page

Ant17

Ant 1.2 Built-In Tasks
(deprecated tasks omitted)

• Ant
– calls a target in another build file

– useful to build subprojects

• AntCall
– calls a target in the same build file

• AntStructure
– generates a DTD describing

all known tasks

• Available
– sets a property if a file, class in

CLASSPATH, or system resource
is present

– can test for the property being
set or not set using the
“if” and “unless” attributes
of the target element

• Chmod
– changes permissions of files and

directories (only under UNIX now)

• Copy
– copies files and directories

• Cvs
– executes any CVS command

• Delete
– deletes files and directories

• Echo
– outputs a message to

System.out or a file

• Exec
– executes a system command

– can restrict use to a specific OS

Ant18

Ant 1.2 Built-In Tasks (Cont’d)

• ExecOn
– like Exec but files and directories

are passed as arguments
to the system command

• Fail
– exits the build and

optionally prints a message

• Filter
– used by tasks that copy files to

replace all occurrences of an @
delimited string with another string

• FixCRLF
– changes line endings in

a set of files to the convention
of the current OS

• GenKey
– generates a key in a keystore

which is a protected database
of private keys associated
with a digital certificate

• Get
– creates a copy of a remote file

at a specified URL
• can use http and ftp URLs

• GUnzip
– unzips a GZIP file

• GZip
– creates a GZIP file from a file

• Jar
– creates a JAR file

from a set of files

Ant19

Ant 1.2 Built-In Tasks (Cont’d)

• Java
– runs a Java application

• Javac
– compiles Java source files

• Javadoc/Javadoc2
– generates javadoc HTML files

from Java source files

• Mail
– sends email using SMTP

• Mkdir
– creates a directory and

any missing parent directories

• Move
– moves files and directories

to a new directory

• Patch
– applies a “diff” to file

• Property
– sets properties that can be used in

the current target and other targets

– can load from a property file

• Replace
– replaces all occurrences of a string

with another string in a file

• Rmic
– runs the rmic compiler on

.class files of Java classes that
implement java.rmi.Remote

• SignJar
– uses javasign to add a digital

signature to a jar or zip file

Ant20

Ant 1.2 Built-In Tasks (Cont’d)

• Sql
– executes a sequence of SQL

statements specified in the
build file or an external text file

– output can be written to a file

• Style
– applies an XSLT stylesheet

to a set of XML files
to produce a set of output files

• Tar
– creates a TAR file

from a set of files

• Taskdef
– defines a custom task

that can be used in the project

• Touch
– creates a file if it doesn’t exist

– updates its modification time
if it does

• Tstamp
– sets the DSTAMP (ccyymmdd),

TSTAMP (hhmm) and
TODAY (month day year)
properties to the current date/time

– useful for creating files and
directories with names that
reflect their creation date/time

• Unjar
– expands a JAR file

• Untar
– expands a TAR file

Ant21

Ant 1.2 Built-In Tasks (Cont’d)

• Unwar
– expands a WAR file

• Unzip
– expands a ZIP file

• Uptodate
– sets a specified property

if a specified file is newer
than a set of source files

• War
– creates a Web Application Archive

from a set of files in
a directory structure
specified by the Java Servlet spec.

• Zip
– creates a ZIP file

from a set of files

Ant22

Ant 1.2 Optional Tasks

• Cab
– creates a Microsoft CAB archive

from a set of files

• FTP
– lists, gets, puts and deletes files

on an FTP server

– requires NetComponents.jar from
http://www.oroinc.com/software/
NetComponents.html

• JavaCC
– CC stands for Compiler Compiler

– reads a grammar specification and
creates a Java application that can
recognize matches to the grammar

• Jlink
– builds jar/zip files by merging

entries from multiple jar/zip files

• JUnit
– runs JUnit tests

– requires junit.jar from http://junit.org

• Native2Ascii
– converts files from native encodings

to ASCII with escaped Unicode

• NetRexxC
– compiles NetRexx source files

• Perforce
– a software configuration

management system
for large projects

– works over the internet or a LAN

– runs on more than 40 platforms

– see www.perforce.com

Ant23

Ant 1.2 Optional Tasks (Cont’d)

• RenameExtensions
– changes the file extension

on a set of files

• Script
– executes a script written in a

Bean Scripting Framework (BSF)
language

– includes JavaScript, PerlScript,
VBScript, JPython and others

• VssGet
– gets files from a Microsoft Visual

Source Safe repository

• EJB Tasks
– ddcreator

• compiles deployment descriptors

– ejbc
• generates support classes

needed to deploy a bean

– wlrun
• starts a WebLogic server

– wlstop
• stops a WebLogic server

– ejbjar
• creates an EJB1.1-compliant

JAR file

currently WebLogic-specific

Ant24

Creating Custom Tasks

• Steps
– create a Java class that

• extends org.apache.tools.ant.Task

• has a no-arg constructor

– plan the attributes, text and child elements that your task element will use

– for each attribute, add a set method
public void setAttrName(type attrName)

• type can be String or any Java primitive type

• see Ant documentation for extra information on using enumerated attributes

– for text, add an addText method
public void addText(String text)

Ant25

Creating Custom Tasks (Cont’d)

• Steps (cont’d)
– for each child element, add a create or add method

public ChildTask createChildTask()

• for empty child task elements
public void addChildTask(ChildTask child)

• for non-empty child task elements

– add the method that implements the tasks
public void execute()

– compile the class

– insure that it can be found using the CLASSPATH environment variable

• For more information
– see the Ant documentation section titled “Writing your own task”

ChildTask must be the name of a
class that also follows these steps

Ant26

Custom Task Example

package com.ociweb.ant;

import java.io.File;

import java.util.Date;

import org.apache.tools.ant.BuildException;

import org.apache.tools.ant.Task;

public class FileStats extends Task {

 private File file;

 public void execute() throws BuildException {

 System.out.println(" file: " + file.getAbsolutePath());

 System.out.println(" length: " + file.length() + " bytes");

 System.out.println("readable: " + file.canRead());

 System.out.println("writable: " + file.canWrite());

 System.out.println("modified: " + new Date(file.lastModified()));

 }

 public void setFile(String fileName) {

 file = new File(fileName);

 }

}

This task accepts a single attribute called “file”.
It does not use text or child elements.

Ant27

Custom Task Example (Cont’d)

• Target using the custom task
<target name="stats" description="displays file statistics">

 <taskdef name="fileStats" classname="com.ociweb.ant.FileStats"/>

 <fileStats file="build.xml"/>

</target>

• Output of the target
Searching for build.xml ...

Buildfile: C:\XMLProgLabs\Framework\build.xml

stats:

 file: C:\XMLProgLabs\Framework\build.xml

 length: 5388 bytes

readable: true

writable: true

modified: Sat Nov 25 10:49:52 CST 2000

BUILD SUCCESSFUL

Total time: 1 second

This can be avoided by registering the custom task in defaults.properties
in the org.apache.tools.ant.taskdefs package along with the built-in tasks.
Extract it from ant.jar, modify it and either put it back in ant.jar or
place it so that it will be found within CLASSPATH before ant.jar

Ant28

Events

• Ant generates events as it executes
– build started/finished

– target started/finished

– task started/finished

– message logged

• Listeners can receive these
– must implement org.apache.tools.ant.BuildListener

• defines a separate method for each of the events listed above

• Makes it possible to
– create a GUI for monitoring and controlling Ant execution

• a project to do this has been started under Apache

• look in the CVS repository under
Apache/jakarta-ant/src/antidote/org/apache/tools/ant/gui

– add support for Ant to an IDE

