
©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Hyperledger Fabric
Reality Check

Lance Feagan

1

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Why Fabric?

2

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Presentation Goals

3

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Presentation Goals
• Reveal areas where those

unfamiliar with Fabric’s
inner-workings will run into
trouble.

3

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Presentation Goals
• Reveal areas where those

unfamiliar with Fabric’s
inner-workings will run into
trouble.

• Slice through marketing
hype with X-ray vision.

3

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Presentation Goals
• Reveal areas where those

unfamiliar with Fabric’s
inner-workings will run into
trouble.

• Slice through marketing
hype with X-ray vision.

• Show how to design
around the problems.

3

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

My Background
• Worked at IBM & IBM Research (USA+China) for 12

years developing database engines (Informix, Db2,
Hyperledger Fabric, DataMirror, BluSpark, SolidDB)

• Chief Architect of Shanghai blockchain startup
focused on using Hyperledger Fabric for Industrial
IoT and supply chain management. Significant
extensions of Fabric, including support for MongoDB,
multiple collections, indexes, backup+restore, offline
and online data verification, CloudHSM.

• Multiple customer engagements using Hyperledger,
including Inter-Bank Payment System (IBPS) for the
Monetary Authority of Singapore (MAS).

4

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Programming Model

5

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: Modern Web App Dev
Pattern Friendly b/c has Node.js
• Goal: Non-Repudiation — Alice signs transaction with her private key

without delegating responsibility to a third party, such as an application
server.

• Reality: Using Fabric as-is, this cannot be achieved in a three-tier
architecture.

• Solutions:

• Organization-level application server transacting on blockchain

• USB HSM: Native mobile app w/secure enclave or USB, native
desktop app

• VirtualHSM: Browser can securely sign

6

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Fabric ≠ 3-Tier Architecture

7

APP SERVER HYPERLEDGER
FABRIC

DATA
SERVICES

USER
INTERFACE

APPLICATION
LOGIC

Components

Provides

Sign
Transaction

Verify Signature,
Store Data

Present DataActions

ModelView ControllerRole

Traditional 3-Tier Architecture

HYPERLEDGER
FABRIC

DATA
SERVICES

USER
INTERFACE

APPLICATION
LOGIC

Verify Signature,
Store Data

Present Data,
Sign Transaction

View Controller,
Model

Standard Hyperledger Fabric Architecture

NATIVE
APPLICATION

WEB
BROWSER

Private
Key

Private
Key

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: With support for Java & Node, any
programmer can write smart contracts.

8

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: With support for Java & Node, any
programmer can write smart contracts.

• Reality: There are many areas where developers will need to understand the
Hyperledger Fabric transaction model to optimize performance.

8

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: With support for Java & Node, any
programmer can write smart contracts.

• Reality: There are many areas where developers will need to understand the
Hyperledger Fabric transaction model to optimize performance.

• Example: If multiple transactions are updating a particular key within a batch
(block), all Tx subsequent to the first will be rejected, as the read-set key
version no longer matches.

8

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: With support for Java & Node, any
programmer can write smart contracts.

• Reality: There are many areas where developers will need to understand the
Hyperledger Fabric transaction model to optimize performance.

• Example: If multiple transactions are updating a particular key within a batch
(block), all Tx subsequent to the first will be rejected, as the read-set key
version no longer matches.

• Solution: When storing an asset with multiple sub-concepts that can be
independently manipulated, these smaller atoms should be stored in
separate keys. This will make it possible for multiple Tx within a block to
update different components.

8

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: With support for Java & Node, any
programmer can write smart contracts.

• Reality: There are many areas where developers will need to understand the
Hyperledger Fabric transaction model to optimize performance.

• Example: If multiple transactions are updating a particular key within a batch
(block), all Tx subsequent to the first will be rejected, as the read-set key
version no longer matches.

• Solution: When storing an asset with multiple sub-concepts that can be
independently manipulated, these smaller atoms should be stored in
separate keys. This will make it possible for multiple Tx within a block to
update different components.

• Example: A company owns many vehicles. The original data model might
have a single company asset with a nested JSON array-of-documents
storing each vehicle’s maintenance and usage information. If instead each
vehicle is stored as a separate asset, they can all be updated simultaneously.

8

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Read-Write Set Example
• The read-write set (RWSet) concept

is integral to Fabric’s disjoint
transaction simulation and commit
model.

• The read set ensures MVCC-like
consistency in the version, and
therefore value, of keys read by the
smart contract. If the read set
matches, the output write set can be
committed without the committing
peer running the smart contract.

9

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: "No ledger data can pass
from one channel to another"

• Reality: Cross-channel transactions can only read data.
While writes can be attempted, they will not appear in the
simulation read-write set returned to the client, and
therefore will not appear in the ledger.

• Example Solution: When designing the IBPS mechanism
to transfer a bank’s liquidity between its bi-lateral
channels, I developed a novel solution that only relied on
cross-channel reads of previous information only “forward
known” to the other party to ensure no money was
created/destroyed in the process of re-balancing funds.

10 Quote Source: https://hyperledger-fabric.readthedocs.io/en/release-1.4/channels.html

https://hyperledger-fabric.readthedocs.io/en/release-1.4/channels.html

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

IBPS Fund Transfer

11

start

moveOutAF

Bi-Lateral Ledger
Account.Balance -= amount
Account.Status = PAUSED
MOF.Status = CREATED
MOF.Currency,Amount,AnonCert

Bi-Lateral Ledger
Account.Balance += TempMOF.Amount
Account.Status = NORMAL
MOF.Status = CANCELLED

cancelMOAF
createAF

Multi-Lateral Ledger
Bank1-Bank2.Liquidity.Currency-=amount

resumeAccount

Bi-Lateral Ledger
Account.Status = NORMAL
MOF.Status = USED

lockAF

Multi-Lateral Ledger
AnonFund.Status=LOCKED
AnonFund.BlLedgerTo=blLedgerTo

Bi-Lateral Ledger
Account.Balance+=amount
MIF.AnonFundId=anonFundId
MIF.Currency=currency
MIF.Amount=amount

Multi-Lateral Ledger
AnonFund.Status=USED
Bank1-Bank3.Liquidity.Currency+=amount

clearAF

moveInAF

Ba
nk

1-
Ba

nk
2

Bi
-L

at
er

al
 C

ha
nn

el
Ba

nk
1-

Ba
nk

3

Multi-Lateral Transfer Channel

{ "class": "AnonymousFund",
 "id": "fg67hi89",
 "currency": "SGD",
 "amount": "1.23",
 "status": "CREATED",
 "certificate": ".."
}

{ "class": "MoveOutFund",
 "id": "a1b2c3",
 "owner": "Bank1",
 "currency": "SGD",
 "amount": "1.23",
 "status": "CREATED",
 "certificate": ".."
}

{ "class": "AnonymousFund",
 "id": "fg67hi89",
 "currency": "SGD",
 "amount": "1.23",
 "status": "LOCKED",
 "certificate": ".."
}

{ "class": "MoveInFund",
 "id": "d4e5f6",
 "owner": "Bank1",
 "currency": "SGD",
 "amount": "1.23",
 "status": "CREATED",
 "certificate": ".."
}

{ "class": "AnonymousFund",
 "id": "fg67hi89",
 "currency": "SGD",
 "amount": "1.23",
 "status": "USED",
 "certificate": ".."
}

σMoF=H(mofId,currency,
amount,status)

Where
mofId=Random#

JSON Signature

σAnonFund=H(afId,currency,
amount,status)

Where
afId=H(sourceChannelId,mofId)

σAnonFund=H(afId,currency,
amount,status)

σAnonFund=H(afId,currency,
amount,status)

σMiF=H(mifId,currency,
amount,status)

Where
mifId=H(targetChannelId,afId)

Arguments

moveOutFundId
currency
amount
anonymous public key
signature

sourceChannelId*
moveOutFundId
signature

anonymousFundId
signature

anonymousFundId
signature

targetChannelId*
anonymousFundId
signature

*=transient

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: Heterogenous DB Support
• Reality: Fabric supports a pluggable database model with built-in support

for LevelDB and CouchDB. If any smart contract uses the rich query
feature of CouchDB in smart contract, then all peer organizations must
also use CouchDB to successfully perform transaction simulation
(commit-only peers could still work in theory).

• Looking at the longer term future, as multiple networks merge, just as
companies merge and integrate/normalize IT systems, there will be a
similar need for Fabric. (Multi-database support among peers on the
network—chain code for CouchDB implementation specific.)

• Solution: Organizations need to plan for the maximal spanning feature set.
Today, that would mean that even though LevelDB might be acceptable
for your use cases today, perhaps it would be better to choose CouchDB.
Better yet, Fabric should adopt MongoDB, which supports many useful
analytics features, such as hierarchical queries, useful for supply chains.

12

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Security

13

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Hype: Channel Policy Mechanism Can
Enforce Related Party Endorsement

• The built-in channel policy mechanism (VSCC) does not support per-method and per-transaction specific
behavior.

• For example, a channel contains three participants: Alice, Bob, and Charles. The smart contract manages
the ownership of assets.

• To transfer an asset, both the buyer and seller organization must agree to, and therefore endorse, the
transfer.

• To cover all possible cases, every pair of participants must be listed in the policy, resulting in the
following: 
(A&B)||(B&C)||(A&C)

• And, while, this clearly covers situations where Alice and Bob are interacting, it also means that Bob
could get Charles to endorse transfer of an asset owned by Alice to Bob, without Alice’s endorsement
being required.

• The problem is that the endorsement policy needs to be responsive to the method, transfer, and to the
buyer and seller arguments corresponding with the endorsing organization’s peers.

• Solution: To be useful, a customer will need to create a custom golang Verification System ChainCode
(VSCC) that inspects the method and arguments to enforce meaningful business-level verification.

14

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: Channels Solve All
Your Data Privacy Problems
• Reality: The ordering service is a single point of trust. All

transactions on all channels flow through it.

• As a central banker, this is a good thing as it represents a
single point of control and audibility.

• As an organization interested in a decentralized solution, this
is a bad thing.

• Solution: It depends on your objectives. A consortium might
prefer use of a centralized ordering service to regulate
members. Most organizations will prefer to use private
collections.

15

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Ordering Service SPoT

16

23

Sample transaction: Step 4/7 – Order Transaction

Application submits responses for
ordering

Application submits responses as a
transaction to be ordered.

Ordering happens across the fabric in
parallel with transactions submitted by
other applications

Fabric

E0

E1

E2 O

O O

OAp

Client
Application

S
D
K

Endorser Ledger

Committer Application

Orderier

Smart Contract
(Chain code)

Endorsement
Policy

Key:

(other applications)

Ordering-Service

P4P3
A

B

A
B

A
B

A
D

24

Sample transaction: Step 5/7 – Deliver Transaction

Orderer delivers to all committing peers

Ordering service collects transactions
into blocks for distribution to committing
peers. Peers can deliver to other peers
using gossip (not shown)

Different ordering algorithms available:
• SOLO (single node, development)
• Kafka (blocks map to topics)
• SBFT (tolerates faulty peers, future)

Fabric

E0

E1

E2 O

O O

OAp

Client
Application

S
D
K

Endorser Ledger

Committer Application

Orderier

Smart Contract
(Chain code)

Endorsement
Policy

Key:

Ordering-Service

P4P3
A

B

A
B

A
B

A
D

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

DevOps

17

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: Channels Are Free
• Reality: Channels multiply like crazy in many real-world scenarios.

• When creating the Inter-Bank Payment System for Singapore’s Central bank, a
little over 200 banks needed to privately communicate with each other through
bi-lateral transfer channels to ensure no information would appear in other
participants ledgers.

• This means each bank has approximately 200 connections to other banks.
Each of those other banks similarly has ~200 connections.

• The net product of all of these private channels is an N^2 explosion of over
20,000 channels.

• The ordering service wasn’t designed to handle so many channels and
becomes quite slow.

• Solution: Private Collections

18

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: Private Collections Solve
the Channel Explosion Problem
• Continuing from the previous slide on channels being free,

private collections are often touted as a holy grail solution.
And, to be fair, in some ways they are, but…

• You still need to define all 20k private collections in a
single JSON file for the channel definition.

• Although the ordering service is no longer a
performance or trust problem, now we need to establish
a P2P network between all organization’s peers.

• Solution: Think carefully about your network architecture.

19

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Private Collection Policy

20

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: Data Privacy is Easy
• Reality: Continuing with the IBPS example, even with channels

or private collections, you still have money (assets) divided up
into hundreds of partitions to avoid other network participants
having a view of your total liquidity made public.

• This results in seemingly simple problems becoming more
complicated. For example, if a specific private collection/
channel lacks sufficient liquidity to fund a transfer between
two banks, money must be transferred from another private
collection in a way that ensures no funds are created/
destroyed in the process while preserving privacy.

• Solution: Hire smart people experienced with developing multi-
party algorithms and distributed systems.

21

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: A Hyperledger Fabric
network is easy to administer
• Reality: Running a production Hyperledger Fabric network requires

specialized routing and firewall rules to establish secure links between
organizations peers, MSPs, and the ordering service. Additional
administrators will need to be involved with management of a cross-
organizational CA.

• IT network engineers need to work as part of a consortium to determine
the appropriate way to expose their peer to other organizations to
receive Tx endorsement proposal/simulation requests while minimizing
an attackers ability to gain access to sensitive information stored in the
peer database.

• Solution: Co-locate all organizations’ peers within a single data center or
provider, such as AWS/Azure/IBM. Of course, being in a single AZ is a
risk unto itself. Ultimately, you need highly skilled network engineers on-
board.

22

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Peer Topology

23

HYPERLEDGER
FABRIC PEER

HYPERLEDGER
FABRIC PEER

HYPERLEDGER
FABRIC PEER

HYPERLEDGER
FABRIC PEER

HYPERLEDGER
FABRIC PEER

SINGLE TENANT
OWNER-OPERATOR

ORGANIZATION
#2

ORGANIZATION
#5

ORGANIZATION
#4

ORGANIZATION
#3

ORGANIZATION
#1

KAFKA
ORDERING
SERVICE

MULTI-PARTY
OPERATIONS

HYPERLEDGER
FABRIC PEER

HYPERLEDGER
FABRIC PEER

HYPERLEDGER
FABRIC PEER

HYPERLEDGER
FABRIC PEER

HYPERLEDGER
FABRIC PEER

ORGANIZATION
#2

ORGANIZATION
#5

ORGANIZATION
#4

ORGANIZATION
#3

ORGANIZATION
#1

KAFKA
ORDERING
SERVICE

ORGANIZATION #1 ORGANIZATION #2

ORGANIZATION #1

FULLY DECENTRALIZED
OPERATIONS

ORGANIZATION #1

HYPERLEDGER
FABRIC PEER

KAFKA
ORDERING
SERVICE

ORGANIZATION #5

HYPERLEDGER
FABRIC PEER

ORGANIZATION
#5

ORGANIZATION #2

HYPERLEDGER
FABRIC PEER

ORGANIZATION
#2

ORGANIZATION #4

HYPERLEDGER
FABRIC PEER

ORGANIZATION
#4

ORGANIZATION #3

HYPERLEDGER
FABRIC PEER

ORGANIZATION
#3

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Network Topology

24

ORGANIZATION NETWORK

DMZ
Peer Network

Server Subnet

PARTNER NETWORK

Partner DMZ

Cloud Data Center

KAFKA
ORDERING
SERVICE

gRPC

ASSET
MGMT

ORACLE
BROKER

Node.JS

CRON
SERVICES

JAVA

MONGODB

EXT

HYPERLEDGER
FABRIC PEER

gRPC

CHAINCODE
CONTAINER

GO

BPM

JAVA

REST
GATEWAY

HTTP

CONSENSUS
GATEWAY

(gRPC ROUTER)

gRPC

APP SERVER

 FABRIC API
 GATEWAY

DATABASEINTEGRATION

Desktop Subnet

iPad

DesktopLaptop

iPhone

FIREWALL

CLOUD HSM
IDENTITY & ACCESS

MANAGEMENT

JAVA

DEVICE IDENTITY
SERVICE

ENTERPRISE
USER DIRECTORY

HTTP

Internet

CONSENSUS
GATEWAY

(gRPC ROUTER)

gRPC

Partner Desktop

Desktop Laptop

Router

FIREWALL

Local-Only
Containers

Router

INTERNET
GATEWAY

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Fabric Components

25

BROWSER

MOBILE
APPLICATIONS

DEVICE IDENTITY
SERVICE

IDE

GRAYLOG

REDIS

EXT

MONGODB

EXT

REST API

Node.JS

CLOUD HSM
IDENTITY & ACCESS

MANAGEMENT

JAVA

ENTERPRISE
USER DIRECTORY

JAVA

CEPH

BAAS API

Python

BAAS AGENT

GO

LINUX HOST

SYSLOG

ASSET MGMT
ENGINE

ORACLE
BROKER

Node.JS

CRON
SERVICES

JAVA
MONGODB

EXT
USER

HYPERLEDGER
FABRIC PEER

GO

KAFKA
ORDERING
SERVICE

JAVA

DIAGNOSTICS MONITORING &
LOGGING

BLOCKCHAIN
ADMIN &

 OPS SERVICES

CHAINCODE
CONTAINER

GO

BPM ENGINE

JAVA

Application ServicesClient Applications

DEVELOPER

Android —> Java
iOS —> Swift/ObjectiveC

ECMA (Browser JavaScript)

ECMA

Membership Services Blockchain Orchestration Services Infrastructure Services

Blockchain & uSmart Contract Services

EXT

KUBERNETES

EXT

1
2

4
1

N

5

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: Clusters Don’t Need
Backups

• Reality: Disasters happen.

• If all Fabric peers are in the same data center/locale and suffer a direct
lightning strike, fire, earthquake, etc… only a remote backup will be sufficient
for recovery.

• If crypto ransomware encrypts all online volumes, having an offline backup
prior to the attack provides the option to reject paying the attacker’s ransom
without complete data loss.

• Recovery by replaying the logs from the genesis block over the network will be
painfully slow.

• Private collections are not part of ledger.

• Solution: Ok: Use LVM and volume snapshots. Better: Customize Fabric to pause
processing and use native backup tool for database.

26

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Myth: Fabric needs few network
& hardware resources to operate
• Reality: All blockchain systems are, in essence, unbounded append-only logical

logs. Storing all data from the genesis block onward and maintaining it has a non-
trivial cost.

• Solution: Increase robustness by including information from older blocks to
incentivize keeping them available. Use hierarchical storage to reduce cost of
storing old blocks.

• Reality: The ordering service is a significant source of network congestion. All
transactions must flow into it one time and are replicated out to “N”
organizations. This problem grows quadratically with the number of organizations.

• Thankfully organizations use gossip between replica peers internally to reduce
inter-network traffic.

• Solution: Use a gossip-based Tx distribution to eliminate need for ordering
service to directly talk with all organizations.

27

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Bandwidth Required
• Minimal transaction proposal size is

0.6KiB

• Proposal endorsement is 1.4 KiB

• 3.4 KiB to/from ordering service for
each commit peer

28

ORGANIZATION NETWORK

CLIENT HYPERLEDGER
FABRIC PEER

gRPC

Cloud Data Center

KAFKA
ORDERING
SERVICE

gRPC

Router

ENDORSING PEER
ORGANIZATION NETWORK

Router
HYPERLEDGER
FABRIC PEER

gRPC

Transaction Flow
1. Send Proposal (0.6 KiB)
2. Receive Endorsement (1.4 KiB)
3. Sent Tx to be Ordered (3.4 KiB)
4. Receive Ordered Tx in Block (3.4 KiB)1,2,3

3,4

1,2

1,2

4

4

1,2,4

1 Tx Bandwidth = 2.0 KiB x PE + 3.4 KiB + 3.4 KiB x PC
Where
PE = Number of Endorsing Peers
PC = Number of Committing Peers

COMMITTING PEER
ORGANIZATION NETWORK

Router
HYPERLEDGER
FABRIC PEER

gRPC

4

4

Transactions/Second on Gigabit Network

Endorsers Commiters
(Orgs)

Bandwidth
(KiB/sec)

1GbE Tx/sec

1 1 8.8 14204.55

1 2 12.2 10245.90

1 4 19 6578.95

1 8 32.6 3834.36

2 2 14.2 8802.82

2 4 21 5952.38

2 8 34.6 3612.72

2 16 61.8 2022.65

2 32 116.2 1075.73

2 64 225 555.56

2 128 442.6 282.42

3 3 19.6 6377.55

3 128 444.6 281.15

3 256 879.8 142.08

3 512 1750.2 71.42

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Final Words

29

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Conclusion
• Experience matters.

• Blockchain adoption is a marathon. Start to build in-
house experience, especially for DevOps and networking.

• Adopting Fabric, or any blockchain system, as an integral
part of your business will require thoughtful analysis of the
business network and technology to maximize ROI.

• Digitalization and a concrete understanding of your
existing businesses process are critical to success.

30

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Final Thoughts
• When Fabric was designed, it was not clear what the

emerging business model changes would be. The hope
was to be sufficiently flexible to provide a good starting
platform given broad configurability and modularity.

• As the most enterprise-ready of the first wave of
blockchain products, there are few situations for which
Fabric cannot be adapted.

• Adoption requires significant expertise in network security
& routing, cryptography, databases, containerization, and
distributed computation.

31

©2020 Object Computing, Inc. All rights reserved objectcomputing.com

Contact

• Twitter: @lfeagan

• LinkedIn

32

https://www.linkedin.com/in/lance-feagan-a3871014/

