ﬁ" COMPUTING WEBINAR

Introducing DDS XTypes

Presented by OCl's OpenDDS Team
January 28, 2021

© 2021, Object Computing, Inc. (OCI). All rights reserved.

No part of these slides may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
prior, written permission of OCI.

©2021 Object Computing, Inc. All rights reserved.

objectcomputing.com

OpenDDS Background
Adam Mitz

=

o,

objectcomputing.com

Solutions Engineering Services

ARCHITECTURE
\ 4

Define Your Solution

Competencies

e Systems / Software Engineering
Software Architecture
Requirements Management

e Modeling (MBSE)

Architecture Frameworks
Compliance

©2021 Object Computing, Inc. All rights reserved.

Applied Experience

Detailed Software Design
Software Development

Systems Integration

Agile/Lean Methods
Technology Agnostic
Automated Testing

Continuous Integration/Delivery
Quality Measurement

Added Value

e Strategic Planning

e Training

e Industry Standards (OMG
Member)

e Flexibility — your location or
ours; your team
management or ours

e Hybrid models

Q

o Mission Critical Systems

® SoS Architecture

o RT Embedded Systems
Simulation

o Telemetry

e DoD/Military
® Aerospace

e Finance

e Manufacturing
e Telcom

objectcomputing.com

—< OpenDDS :

OpenDDS is the secure and scalable connectivity framework

connecting and powering next-generation systems

T

SECURE SCALABLE INTEROPERABLE

©2021 Object Computing, Inc. All rights reserved. 5 objectcomputing.com

Standards-based Publish/Subscribe Solution u

L@ii §§ ia &”§ OBIECT
S~ u COMPUTING
Implemented By

OBJECT MANAGEMENT GROUP Resulting In

Specifi 1> .
e -4\: 2> OpenDDS
7 A
DDS OpenDDS is an open source and widely adopted
LS standards-based real-time publish/subscribe solution
Data Distribution Service ™ for distributed systems.
www.omg.org/spec/category/data-distribution-service * opendds.org

dds-foundation.org

* https://qithub.com/objectcomputing/OpenDDS

©2021 Object Computing, Inc. All rights reserved.

http://opendds.org/
https://github.com/objectcomputing/OpenDDS
http://www.omg.org/spec/category/data-distribution-service
https://dds-foundation.org

DDS Terms and Concepts

Q

e Sender of data: DataWriter DataWriters and DataReaders each act as
e Receiver of data: DataReader caches. Their contents are synced over the
e Coordination point: Topic network according to QoS policies.
[e i . Domain\
.. »{ “Track” Topic }4..-....._
DataWriter Publisher | Jar

Global Subscriber]‘

sDa L ‘ “Sensor’ |
"I DataWriter) pace DataReader | ™
\ N—— '._.
Publisher ¢ “
(o ’ﬁ e R
“Sensor Subscriber Sensor ;
DataWriter DataReader |
............................... _>'| I'Sensorﬂ Topic}‘.........-.-..-'--o...,,_.,.".... \ :: J f
o !

DataReader

©2021 Object Computing, Inc. All rights reserved.

objectcomputing.com

OpenDDS Key Features u

e Complete DDS-DCPS API: QoS policies, Content Filter, MultiTopic
- C++ and Java

e Code generation from IDL
- C++ (classic and C++11) and Java

e Cross-platform: desktop, mobile, embedded, cloud

e Pluggable Transport and Discovery

® Interoperable Wire Protocol (DDSI-RTPS)

e DDS Security

e RTPS over the Internet (RtpsRelay, IETF STUN and ICE)

o Xlypes

©2021 Object Computing, Inc. All rights reserved.

Introducing XTypes

Mike Kuznetsov

=

o,

objectcomputing.com

Why XTypes, Extensible Topic Types in OpenDDS? u

1: Distributed System Evolution

e Before XTypes: An assumption built into DDS model is that all applications agree on data type
definitions for each Topic that they use. All participants (publishers and subscribers) in the
distributed DDS system have fixed data format knowledge at compile time.

e This assumption is not practical as systems must be able to evolve while remaining compatible and
interoperable. As new participants are added to the system, their data format may deviate from the
initial design. Before XTypes this would necessitate adding new topics and / or upgrading existing
participants with ‘knowledge’ of new data type format.

e With XTypes: Existing participants are aware of possible variances in the data format and handle
addition of new-format participants without software upgrades.

©2021 Object Computing, Inc. All rights reserved.

Why XTypes, Extensible Topic Types in OpenDDS? u y

2: Data Variability Under One Topic

Another use case is when system design requirements dictate DDS participants data format
differentiation, but also communicating on the same topic.

Typical battery lab test unit collects data from a variety of sources

Safety Heat
Computer Cell Monitoring Circuit Element

mililn

Driven by specific battery and test type, each

test unit may have different collection of
instruments and sensors, but publishes its data
to a central location subscriber for test control

and data acquisition

Temperature
feonn LT

Use of XTypes allows DDS participants to
communicate with different data format on the

£ —
Digital Loadbank Pressure External Charger Thermal
Chamber

same topic

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Data Type Evolution Example u

Car rental company adding EVs to its fleet

==

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Data Type Evolution Example (cont.) u

Car rental company adding EVs to its fleet
e Company uses Vehicle Remote Health Monitoring System
° Data from all vehicles is sent to the Service Center
) Data may include variables such as oil level, tire pressure, etc.
° Existing vehicles use internal combustion engines (ICE) which can be powered by gasoline or diesel.

) With addition of the Hybrid Electric Vehicles (HEV) and electric vehicles (EV), new data variables need to be added: Powertrain battery state
of charge (SOC, %) and Cell Voltages (V).

Original data type Possible new data type (works for ICE, HEV or EV)

@topic @topic
struct VehicleHealth { struct VehicleHealth {

@key string vin; @key string vin;

short oil_level; short oil_level;

sequence<double, 4> tire_pressure; sequence<double, 4> tire_pressure;
}; double battery_soc;

sequence<double> cell_voltages;
I

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Mechanism of Annotations u

OpenDDS uses IDL annotations to specify some properties for data types that it transmits and processes.

e The @topic annotation marks a data type that can be used as a topic’s type. This must be a structure or a
union.

e The @key annotation identifies a field that is used as a key for this topic type. A topic type may have zero or
more key fields. These keys are used to identify different DDS Instances within a topic.

@topic

struct VehicleHealth {
@key string vin;
short oil_level;
sequence<double, 4> tire_pressure;
double battery_soc;
sequence<double> cell_voltages;

s

e Some annotations new to XTypes are @final, @appendable, @mutable, and @try_construct

©2021 Object Computing, Inc. All rights reserved.

objectcomputing.com

Extensibility
Fred Hornsey

=

o,

objectcomputing.com

Appendable u

In our VehicleHealth struct, using appendable is easy because it's already appendable by default. However
@appendable can be applied to a struct for making that intention clear if desired.

IDL in older ICE vehicles IDL in EVs and newer ICE vehicles

@topic @topic
@appendable @appendable
struct VehicleHealth { struct VehicleHealth {

@key string vin; @key string vin;

short oil_level; short oil_level;

sequence<double, 4> tire_pressure; sequence<double, 4> tire_pressure;
}; double battery_soc;

sequence<double> cell_voltages;
I

Members of appendable structs can’t be removed, renamed, or reordered without breaking capability.
New members must always go at the end.

©2021 Object Computing, Inc. All rights reserved.

objectcomputing.com

Mutable u

Mutable structs and unions are much more flexible than appendable ones. They work based on an integer
that identifies each member. These IDs allows them to appear in any order and for certain members to be
excluded by the writer or skipped by the reader.

We will cover more about member IDs later. For now we will just use @autoid (HASH), which generates
IDs based on the name of the member.

If we know we want to make VehicleHealth mutable beforehand, we can write this as the first version:

@topic
@mutable
@autoid(HASH)
struct VehicleHealth {
@key string vin;
short oil_level;
sequence<double, 4> tire_pressure;

s

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Mutable u

When EVs are added to the fleet, but new ICE vehicles are also being added, the relevant fields can be
added to the IDL in the same way as appendable:

@topic

@mutable

@autoid(HASH)

struct VehicleHealth {
@key string vin;
short oil_level;
sequence<double, 4> tire_pressure;
double battery_soc;
sequence<double> cell_voltages;

s

The main difference between this and appendable is that if the values are the same as their default values,
the fields may be omitted from the message on the wire and so it can be smaller.

©2021 Object Computing, Inc. All rights reserved.

objectcomputing.com

Mutable u

If at some point all ICE vehicle where removed from the fleet, we could remove the oil_level field
altogether.

@topic

@mutable

@autoid(HASH)

struct VehicleHealth {
@key string vin;
sequence<double, 4> tire_pressure;
double battery_soc;
sequence<double> cell_voltages;

s

Existing EVs with 011_level in their IDL would continue to be compatible with the new IDL.

Key fields can’t be modified in this way. Removing or modifying a key field will result in the types being
incompatible.

©2021 Object Computing, Inc. All rights reserved.

objectcomputing.com

Unions u

Unions can also be annotated with extensibility annotations.

For example say we had a sequence of union for miscellaneous details about the status of a vehicle:

typedef float Location[3];
enum DetailType {OdometerDetail, LocationDetail};

@appendable
union Detail switch (DetailType) {
case OdometerDetail:
unsigned long miles;
case LocationDetail:
Location location;

}I

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Unions u

If we wanted to know if an electric vehicle was charging and what the power level of the charger was, we
could add that to IDL like so:

typedef float Location[3];
enum DetailType {OdometerDetail, LocationDetail, ChargingDetail};

@appendable
union Detail switch (DetailType) {
case OdometerDetail:
unsigned long miles;
case LocationDetail:
Location location;
case ChargingDetail:
float watts;

}s

If we detected irregularities in the power level it could help diagnose issues with the vehicle.

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Extensibility u

In XTypes, structs and unions can differ from one participant to another while still being compatible with
one another.

e How the structs and unions can or can’t be modified depends on the extensibility IDL annotation
applied.

o @appendable
m The default extensibility

m New members can be added to structs and unions, but existing members can’t be
removed or reordered.

o @mutable

m Members can be added, removed, reordered, and possibly renamed while retaining
compatibility with older IDL.

o @final

m Structs and unions should not be changed or else readers and writers will not be able to
associate.

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Try-Construct
Clayton Calabrese

23

=

o,

objectcomputing.com

Try-Construct Overview u

e (@try_construct is an annotation that defines how a reader recovers from an object construction failure, and then
constructs a sample from a published sample of a different but assignable type

e 3 values for this annotation

O DISCARD
O USE_DEFAULT
O TRIM

e Annotation goes on members of a type, unlike extensibility which goes on the type itself

e |f a member exists in both the reader and writer and there is no Try-Construct annotation, DISCARD behavior is
implied.

e If a member is added to the reader that does not exist in the writer, it gets the default value for that type.
e If a member exists on the writer that does not exist on the reader, the member is ignored for Try-Construct.

e Only the reader’s Try-Construct annotation matters

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Discard

Your rental company adds a gas pump, which
communicates with cars to get their fuel types and
then selects automatically for each customer.

This is set up using an enumerated type FuelType.

Over time, car technology improves and adds
additional types of vehicles, such as electric.

New vehicles have an additional value in their enum:
electric.

©2021 Object Computing, Inc. All rights reserved.

@mutable enum FuelType {Diesel, Premium,
Standard, Electric};

// New Vehicle Writer
@topic

@mutable

struct Vehicle {
FuelType ft;

H

@mutable enum FuelType {Diesel, Premium,
Standard};

// 0l1ld Vehicle Writer + 0ld Gas Pump Reader
@topic

@mutable

struct Vehicle {

@try_construct(DISCARD) FuelType ft;

I

objectcomputing.com

Discard

Vehicle sends Gas Pump a sample containing the
FuelType: Electric

Gas Pump receives Electric, which does not
correspond to any values in FuelType, and the
sample is rejected.

When do you want to utilize DISCARD?

When a member is absolutely necessary for a
sample to be understood

When a member cannot be abbreviated or
replaced without loss of crucial information

©2021 Object Computing, Inc. All rights reserved.

@mutable enum FuelType {Diesel, Premium,
Standard, Electric};

// New Vehicle Writer
@topic

@mutable

struct Vehicle {
FuelType ft;

H

@mutable enum FuelType {Diesel, Premium,
Standard};

// 0l1ld Vehicle Writer + 0ld Gas Pump Reader
@topic

@mutable

struct Vehicle {

@try_construct(DISCARD) FuelType ft;

b

objectcomputing.com

Use Default

You have the same Old Gas Pump reader setup for
the same scenario as before.

You don't like the idea of just discarding samples
because even if customers don’t buy your gasoline,
you still want to advertise your company on the

display.

Like before, car technology improves and electric
vehicles emerge to become a large part of the market.

You prepare for this by having the first value in your
enum be Default. The first value in an enumerated
value list is the default; it will be used if an unknown
value is received.

©2021 Object Computing, Inc. All rights reserved.

@mutable enum FuelType {Default, Diesel,
Premium, Standard, Electric};

// New Vehicle Writer
@topic

@mutable

struct Vehicle {
FuelType ft;

H

@mutable enum FuelType {Default, Diesel,
Premium, Standard};

// 0l1ld Vehicle Writer + 0ld Gas Pump Reader
@topic

@mutable

struct Vehicle {
@try_construct(USE_DEFAULT) FuelType ft;

b

objectcomputing.com

Use Default

A new vehicle writer sends the gas pump a sample containing
the FuelType: Electric

Gas pump receives Electric, which is not in its list of enum
values. The sample then has the value received replaced with
the default Default and is accepted.

Your code recognizes an unknown vehicle type has been
detected and flashes your company logo on the gas pump

display.

What are defaults for different types listed in XTypes
specification, but generally corresponds to the 0 or empty value
for a type.

When do you want to utilize USE_DEFAULT?

e When not all writers have all members the reader
expects. Example would be supporting legacy devices
that might not produce all the data a new version does.

©2021 Object Computing, Inc. All rights reserved.

@mutable enum FuelType {Default, Diesel,
Premium, Standard, Electric};

// New Vehicle Writer
@topic

@mutable

struct Vehicle {
FuelType ft;

H

@mutable enum FuelType {Default, Diesel,
Premium, Standard};

// 0l1ld Vehicle Writer + 0ld Gas Pump Reader
@topic

@mutable

struct Vehicle {
@try_construct(USE_DEFAULT) FuelType ft;
I

objectcomputing.com

Trim

You have a system setup that periodically receives

typedef string<5> model5;

samples from each vehicle in your fleet and logs the

sample to your database. // Vehicle Writer
@topic
As your business has grown, the amount of data and @mutable
| . llected . has i d. Y. struct CarInfo {

samples you've collected over time has increased. You ekey string vin:
have thus become concerned about the amount of string make;
data you are saving and want a way to reduce stored string model_name;
sample size. U
Y, I h ios h . del // Database Reader

ou realize that companies have unique model names Gl
that you can shorten to save space. You settle on 5 @mutable

struct CarInfo {

@key string vin;

string make;

@try_construct(TRIM) model5 model_name;
i

characters as the most you will need to uniquely
identify a type of vehicle.

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Trim

Vehicle sends database reader a sample containing the
make: “Toyota” and model_name: “Corolla”

Database reader receives this sample, but “Corolla” is too
long for model5. It is shortened to the maximum size, 5:
“Corol,” and the sample is accepted.

Your code then adds this smaller sample into the database.

Trim applies only to Bounded Strings and Bounded
Sequences.

When do you want to utilize TRIM?

e When you are trying to reduce the size of received
samples
e When loss of data precision is unimportant

©2021 Object Computing, Inc. All rights reserved.

typedef string<5> model5;

// Vehicle Writer
@topic
@mutable
struct CarInfo {
@key string vin;
string make;
string model_name;

b

// Database Reader

@topic

@mutable

struct CarInfo {
@key string vin;
string make;

}i

@try_construct(TRIM) model5 model_name;

objectcomputing.com

Try-Construct Advanced Overview u

e Try-Construct only occurs on object construction failures, so it will only be activated on:

bounded sequences

bounded strings

enumerated types

types with the above nested in them, such as structs, unions, arrays, and sequences.

o O O O

e Discard takes precedence over trimand use_default. As long as one discard is triggered at
the same level, the entire sample will be discarded.

e Innested types, a discard is considered an object construction failure at the level above, but
use_default and trim are not.

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Advanced XTypes
Son Dinh

32

=

o,

objectcomputing.com

Renaming Fields u

XTypes supports renaming fields while keeping type compatibility between writer and reader

e Explicitly assign member IDs using @id or @hashid annotations

e Member names can be ignored during type compatibility check (to be added after 3.16)
Example
Older data type Newer data type
@topic @topic
@appendable @appendable
struct VehicleHealth { struct VehicleHealth {
@id(1) @key string vin; <@ = == == = == = = = = = = @id(71) @key string identity;
@id(2) short oil_level; @id(2) short oil_level;
@id(3) sequence<double, 4> tire_pressure; @id(3) sequence<double, 4> tire_pressure;
}; @id(4) double battery_soc;

@id(5) sequence<double> cell_voltages;

b

©2021 Object Computing, Inc. All rights reserved. objectcomputing.com

Compatibility With Non-XTypes u

e Can be done using Final or Appendable extensibility kind together with a specific data
representation (XCDR1)

o Data is encoded similar to that of non-XTypes systems

Non-XTypes system XTypes system

@topic @topic

struct VehicleHealth { _ @final

@key string vin; struct VehicleHealth {

short oil_level; @key string vin;
sequence<double, 4> tire_pressure; short oil_level:
|2 sequence<double, 4> tire_pressure;
5

e More details in OpenDDS Developer's Guide document

objectcomputing.com

©2021 Object Computing, Inc. All rights reserved.

Under The Hood of XTypes u

o Typeldentifier & TypeObject

o Objects describing the data types of the communicating peers
o Used to perform type compatibility check between peers

e Type lookup service

o Internal service to exchange TypeObjects between peers

o Incorporated into the discovery process to get remote types for type compatibility
check

o If secure discovery is used, type lookup is also secured

e Data representations

o Encoding format is determined by the extensibility kind of the data type and the
encoding version being used (XCDR1 or XCDR2)

©2021 Object Computing, Inc. All rights reserved.

©2021 Object Computing, Inc. All rights reserved.

Wrap Up
Adam Mitz

36

=

o,

objectcomputing.com

What Else Is in XTypes?

o XTypes spec some features not yet implemented:

- Dynamic Types API
Participant application doesn't need code
generated from IDL

- Additional annotations
Custom default values, optional fields

- |IDL version 4 extensions
Struct inheritance

e We welcome your involvement
- GitHub issues
- Code contributions
- Sponsorship

©2021 Object Computing, Inc. All rights reserved. 37

objectcomputing.com

Next Steps u "

e Download OpenDDS 3.16 (or newer)

- github.com/objectcomputing/OpenDDS or opendds.org
- Developer's Guide PDF (opendds.org/documents)

e "Introduction to OpenDDS Programming" online training March 3-4, 2021
objectcomputing.com/services/training/catalog/middleware/opendds-programming-cpp-and-java

e How can OCI help you with OpenDDS?
- Custom training
- Architecture and design consulting
- Porting, extending, integrating
- Performance and scalability analysis
- Research and development
- Ad-hoc support

e Contact us (next page) or visit
- objectcomputing.com/products/opendds/opendds-consulting-and-support

©2021 Object Computing, Inc. All rights reserved.

objectcomputing.com

https://github.com/objectcomputing/OpenDDS
https://opendds.org/
https://opendds.org/documents/
https://objectcomputing.com/services/training/catalog/middleware/opendds-programming-cpp-and-java
https://objectcomputing.com/products/opendds/opendds-consulting-and-support

THANK YOU!

LET'S
CONNECT

& +1(314)579.0066
= info@objectcomputing.com

@ objectcomputing.com

©2021 Object Computing, Inc. All rights reserved. 39

=0

(=]

objectcomputing.com

